Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Jie Ma, ${ }^{\text {a }}$ Jun Tao, ${ }^{\text {a }}$ Rong-Bin

 Huang $^{\mathrm{a} *}$ and Lan-Sun Zheng ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.081$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquamanganese(II) 5,5'-(1,4-phenylene)ditetrazolate

The hydrothermal reaction of manganese chloride tetrahydrate and $5,5^{\prime}$-(1,4-phenylene)bis(1 H -tetrazole) gave the title compound, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{8}\right)$. In the molecule, the $\mathrm{Mn}^{\text {II }}$ atom is octahedrally coordinated by six water molecules and is located on an inversion center. The centrosymmetric tetrazolate anion remains unligated and links to water via hydrogen bonds.

Comment

Much attention has been paid over the last decade to coordination frameworks with channels or pores, because of their potential applications in catalysis (Seo et al., 2000), separation (Uemura et al., 2002), ion exchange (Yaghi \& Li, 1995) and gas storage (Rosi et al., 2003). A variety of organic ligands with multifunctional groups have been used to construct the framework. 5,5'-(1,4-Phenylene)bis(1 H -tetrazole) is one of the most successful ligands used for this purpose. Some examples have been reported (Xiong et al., 2002; Xue et al., 2002; Tao et al., 2004).

(I)

We reported the crystal structure of the coordination polymer of 5,5'-(1,4-phenylene)bis(1 H -tetrazole) and cadmium(II), which formed a three-dimensional framework with one-dimensional channels (Tao et al., 2004). This paper concerns the reaction of manganese(II) and 5,5'-(1,4-phenyl-

Figure 1
ORTEPII plot (Johnson, 1976) of the title compound, with displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) $1-x$, $-y, 1-z$; (ii) $3-x,-y, 2-z]$.

Received 13 December 2004
Accepted 14 January 2005 Online 29 January 2005
ene) $\operatorname{bis}(1 H$-tetrazole $)$, and the crystal structure of the product, (I). However, the results shows that there are no channels in the crystal structure.

In the title compound (Fig. 1), the $\mathrm{Mn}^{\mathrm{II}}$ ion is coordinated by six water molecules and is located on an inversion center. The coordinated water molecules interact with the uncoordinated centrosymmetric anion via hydrogen bonds (Fig. 2, Table 2).

Experimental

Manganese chloride tetrahydrate ($0.049 \mathrm{~g}, 0.25 \mathrm{mmol}$) and 5,5'-(1,4phenylene)bis(1 H -tetrazole) $(0.054 \mathrm{~g}, 0.25 \mathrm{mmol})$ were mixed in water (8 ml). The pH of the solution was adjusted to neutral with sodium hydroxide solution. The solution was transferred into a Teflon-lined stainless steel autoclave and the autoclave was heated to 413 K and maintained at that temperature for 48 h . After cooling to room temperature, crystals suitable for X-ray diffraction were collected.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{8}\right)$
$M_{r}=375.23$
Monoclinic, $P 2_{1} / n$
$a=5.0587(3) \AA$
$b=13.4343(7) \AA$
$c=11.4989(6) \AA$
$\beta=96.149(1){ }^{\circ}{ }^{\circ}$
$V=776.97(7) \AA^{3}$
$Z=2$
$D_{x}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \mathrm{\alpha}$ radiation
Cell parameters from 4474
reflections
$\theta=2.3-28.3^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Block, colorless
$0.32 \times 0.26 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX 2000	1674 independent reflections
\quad diffractometer	1599 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.020$
Absorption correction: multi-scan	$\theta_{\max }=27.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-6 \rightarrow 6$
$T_{\min }=0.763, T_{\max }=0.870$	$k=-16 \rightarrow 17$
6205 measured reflections	$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
1674 reflections
130 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0463 P)^{2}\right. \\
& \quad+0.2423 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 3 W$	$2.156(1)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.342(2)$
$\mathrm{Mn} 1-\mathrm{O} 2 W$	$2.170(1)$	$\mathrm{N} 4-\mathrm{C} 1$	$1.325(2)$
$\mathrm{Mn} 1-\mathrm{O} 1 W$	$2.203(1)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.465(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.328(2)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.384(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.339(1)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.390(2)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.295(1)$		
$\mathrm{O} 3 W-\mathrm{Mn} 1-\mathrm{O} 2 W$	$94.38(5)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$109.2(1)$
$\mathrm{O} 3 W-\mathrm{Mn} 1-\mathrm{O} 1 W$	$87.56(5)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$	$109.5(1)$
$\mathrm{O} 2 W-\mathrm{Mn} 1-\mathrm{O} 1 W$	$86.73(4)$	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 3$	$105.0(1)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$105.3(1)$	$\mathrm{N} 4-\mathrm{C} 1-\mathrm{N} 1$	$110.9(1)$

Figure 2
Packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{~N} 2$	0.838 (9)	1.94 (1)	2.746 (2)	160 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.847 (9)	1.872 (9)	2.706 (1)	168 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.854 (9)	1.87 (1)	2.720 (2)	172 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{~N} 3^{\text {iii }}$	0.845 (9)	1.905 (9)	2.721 (2)	162 (1)

Water H atoms were initially located in a difference Fourier map and were refined freely with isotropic displacement parameters. The aromatic H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the NSFC (grant Nos. 20241003 and 20301014) and the Natural Science Foundation of Fujian Province (grant No. 2002j004).

References

Bruker, (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim. J., OKeeffe, M. \& Yaghi, O. M.(2003). Science, 300, 1127-1129.

metal-organic papers

Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. \& Kim, K. (2000). Nature (London), 404, 982-986.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tao, J., Ma, Z.-J., Huang, R.-B. \& Zheng, L.-S.(2004). Inorg. Chem. 43, 61336135.

Uemura, K., Kitagawa, S., Kondo, M., Fukui, K., Kitaura, R., Chang, H.-C. \& Mizutani, T. (2002). Chem. Eur. J. 8, 3586-3600.
Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. \& Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.

Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. \& Che, C.-M. (2002). Inorg. Chem. 41, 6544-6546.
Yaghi, O. M. \& Li, H.-L. (1995). J. Am. Chem. Soc. 117, 10401-10402.

