Received 13 December 2004 Accepted 14 January 2005

Online 29 January 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Jie Ma,^a Jun Tao,^a Rong-Bin Huang^a* and Lan-Sun Zheng^b

^aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^bState Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, People's Republic of China

Correspondence e-mail: rbhuang@xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.029 wR factor = 0.081 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexaaquamanganese(II) 5,5'-(1,4-phenylene)ditetrazolate

The hydrothermal reaction of manganese chloride tetrahydrate and 5,5'-(1,4-phenylene)bis(1*H*-tetrazole) gave the title compound, $[Mn(H_2O)_6](C_8H_4N_8)$. In the molecule, the Mn^{II} atom is octahedrally coordinated by six water molecules and is located on an inversion center. The centrosymmetric tetrazolate anion remains unligated and links to water *via* hydrogen bonds.

Comment

Much attention has been paid over the last decade to coordination frameworks with channels or pores, because of their potential applications in catalysis (Seo *et al.*, 2000), separation (Uemura *et al.*, 2002), ion exchange (Yaghi & Li, 1995) and gas storage (Rosi *et al.*, 2003). A variety of organic ligands with multifunctional groups have been used to construct the framework. 5,5'-(1,4-Phenylene)bis(1*H*-tetrazole) is one of the most successful ligands used for this purpose. Some examples have been reported (Xiong *et al.*, 2002; Xue *et al.*, 2002; Tao *et al.*, 2004).

We reported the crystal structure of the coordination polymer of 5,5'-(1,4-phenylene)bis(1*H*-tetrazole) and cadmium(II), which formed a three-dimensional framework with one-dimensional channels (Tao *et al.*, 2004). This paper concerns the reaction of manganese(II) and 5,5'-(1,4-phenyl-

Figure 1

ORTEPII plot (Johnson, 1976) of the title compound, with displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 3 - x, -y, 2 - z].

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

ene)bis(1*H*-tetrazole), and the crystal structure of the product, (I). However, the results shows that there are no channels in the crystal structure.

In the title compound (Fig. 1), the Mn^{II} ion is coordinated by six water molecules and is located on an inversion center. The coordinated water molecules interact with the uncoordinated centrosymmetric anion *via* hydrogen bonds (Fig. 2, Table 2).

Experimental

Manganese chloride tetrahydrate (0.049 g, 0.25 mmol) and 5,5'-(1,4phenylene)bis(1*H*-tetrazole) (0.054 g, 0.2 5 mmol) were mixed in water (8 ml). The pH of the solution was adjusted to neutral with sodium hydroxide solution. The solution was transferred into a Teflon-lined stainless steel autoclave and the autoclave was heated to 413 K and maintained at that temperature for 48 h. After cooling to room temperature, crystals suitable for X-ray diffraction were collected.

> $D_x = 1.604 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 4474

reflections

 $\mu = 0.89 \text{ mm}^{-1}$ T = 296 (2) KBlock, colorless $0.32 \times 0.26 \times 0.16 \text{ mm}$

1674 independent reflections 1599 reflections with $I > 2\sigma(I)$

 $\theta = 2.3 - 28.3^{\circ}$

 $\begin{aligned} R_{\rm int} &= 0.020\\ \theta_{\rm max} &= 27.0^\circ \end{aligned}$

 $h=-6\to 6$

 $k = -16 \rightarrow 17$ $l = -13 \rightarrow 14$

Crystal data

$[Mn(H_2O)_6](C_8H_4N_8)$
$M_r = 375.23$
Monoclinic, $P2_1/n$
a = 5.0587 (3) Å
b = 13.4343 (7) Å
c = 11.4989 (6) Å
$\beta = 96.149 \ (1)^{\circ}$
$V = 776.97 (7) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART APEX 2000 diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.763, T_{\max} = 0.870$ 6205 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0463P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.029$	+ 0.2423P]
$wR(F^2) = 0.081$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
1674 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
130 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table	1
-------	---

Selected	geometric	parameters	(À,	°).

-			
Mn1 - O3W	2.156(1)	N3-N4	1.342 (2)
Mn1 - O2W	2.170(1)	N4-C1	1.325 (2)
Mn1 - O1W	2.203 (1)	C1-C2	1.465 (2)
N1-C1	1.328 (2)	C2-C4	1.384 (2)
N1-N2	1.339(1)	C2-C3	1.390 (2)
N2-N3	1.295 (1)		
O3W-Mn1-O2W	94.38 (5)	N3-N2-N1	109.2 (1)
O3W-Mn1-O1W	87.56 (5)	N2-N3-N4	109.5 (1)
O2W-Mn1-O1W	86.73 (4)	C1-N4-N3	105.0(1)
C1-N1-N2	105.3 (1)	N4-C1-N1	110.9 (1)

Figure 2

Packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are drawn as dashed lines.

Table 2	
Hydrogen-bonding geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W - H1WA \cdots N1^{i} \\ O2W - H2WA \cdots N4^{ii} \end{array}$	0.838 (9)	1.94 (1)	2.746 (2)	160 (2)
	0.847 (9)	1.872 (9)	2.706 (1)	168 (2)
	0.854 (9)	1.87 (1)	2.720 (2)	172 (2)
	0.845 (9)	1.905 (9)	2.721 (2)	162 (1)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) $x - \frac{1}{2}, -\frac{1}{2} - y, z - \frac{1}{2}$.

Water H atoms were initially located in a difference Fourier map and were refined freely with isotropic displacement parameters. The aromatic H atoms were constrained to an ideal geometry, with C–H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the NSFC (grant Nos. 20241003 and 20301014) and the Natural Science Foundation of Fujian Province (grant No. 2002j004).

References

Bruker, (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim. J., OKeeffe, M. & Yaghi, O. M.(2003). Science, 300, 1127–1129.

- Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). *Nature (London)*, **404**, 982–986.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tao, J., Ma, Z.-J., Huang, R.-B. & Zheng, L.-S.(2004). *Inorg. Chem.* 43, 6133–6135.
- Uemura, K., Kitagawa, S., Kondo, M., Fukui, K., Kitaura, R., Chang, H.-C. & Mizutani, T. (2002). Chem. Eur. J. 8, 3586–3600.
- Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.
- Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). *Inorg. Chem.* 41, 6544–6546.
- Yaghi, O. M. & Li, H.-L. (1995). J. Am. Chem. Soc. 117, 10401-10402.